

Ультразвуковые датчики Sonopulse

(SP-1000, SP-2000, SP-3000, SP-4000)

Инструкция по настройке и монтажу 38978553.407533.012 ИМ

Версия 04-2025 2025

Содержание

1 Общие сведения	3
2 Порядок настройки датчика с помощью компьютера	3
2.1 Подключение цепей	3
2.2 Использование программы «Sonopulse Tune»	4
3 Порядок настройки датчика по технологии Teach-IN	9
3.1 Подключение цепей и общая информация	9
3.2 Установка границ диапазона для аналогового выхода	9
3.3 Выбор инверсного изменения сигнала на аналоговом выходе	9
3.4 Установка границ окна срабатывания дискретного выхода	10
3.5 Установка одного порога срабатывания дискретного выхода	10
4 Индикация режимов работы датчика	11
5 Фильтрация сигнала при работе	11
6 Размещение датчика на объекте	13
6.1 Установка датчика в резервуарах	13
6.2 Измерение расстояния до объекта	14
6.3 Работа дискретных выходов в разных режимах	15
Приложение А Внешний вид адаптера SCON 100	17
Приложение Б Подключения для конфигурирования датчика	17

Настоящая инструкция по настройке и монтажу **Ультразвуковых датчиков Sonopulse** (далее – «датчик» или «изделие»), является дополнением руководства по эксплуатации и содержит технические сведения, необходимые для правильного их применения.

Используемые сокращения

- ПО программное обеспечение;
- ПК персональный компьютер (IBM-совместимый);
- **ЦАП** цифро-аналоговый преобразователь сигнала.

1 Общие сведения

1.1 При изготовлении датчик поставляется со следующими установленными параметрами (по умолчанию):

• при наличии в заказанном исполнении аналогового выхода:

 диапазон преобразования расстояния в аналоговый сигнал соответствует рабочему диапазону по технической спецификации (см. маркировку датчика);

 аналоговый сигнал на выходе имеет возрастающую характеристику при удалении отражателя (увеличение тока или напряжения при удалении отражателя);

• при наличии в заказанном исполнении дискретных выходов:

отключена инверсия выходного сигнала;

- режим работы: «окно»;

- нижний и верхний пороги срабатывания соответствуют 1/3 и 2/3 диапазона измерений расстояния.

1.2 Пользователь может изменять заводские значения параметров в соответствии с условиями и целями эксплуатации датчика. Для установки параметров нужного алгоритма работы выполняется конфигурирование изделия. Предусмотрено два способа настройки: – на компьютере, с использованием для подключения датчика внешнего адаптер SCON 100 и соответствующего ПО («Sonopulse Tune»);

на объекте, с обучением датчика по отраженному сигналу (технология Teach-IN).
 Методы настройки подробно описаны далее в разделах 2 и 3.

2 Порядок настройки датчика с помощью компьютера

2.1 Подключение цепей

2.1.1 Для настройки используется компьютер с операционной системой MS Windows 7/8/10/11 (32-bit или 64-bit) с установленной программой «Sonopulse Tune» (доступна на сайте изготовителя).

2.1.2 Датчик соединяется через адаптер SCON 100 (**Приложение A**) к любому свободному порту USB 2.0 (или 3.0) ПК по схеме **рисунок Б.1** (**Приложении Б**). Во время настройки адаптер питается от USB-порта компьютера и обеспечивает необходимое питание для работы датчика.

2.2 Использование программы «Sonopulse Tune»

2.2.1 Для настройки работы изделия следует:

1) включить ПК и запустить программу «Sonopulse Tune», – откроется экранная форма установки параметров связи (рисунок 2.1);

Nonopulse Tune	- 0	×	Выбираются:
Порт обмена	COM6	~	 СОМ – порт. время ожидания ответа на запрос.
Тайм-аут, мс	30	~	Кнопки для подтверждения или отмены дальнейших действий.
Подключить	Отмена		

Подтверждается сделанный выбор нажатием курсором кнопки «Подключить».

2) После соединения с датчиком появится главное окно, где доступны для выбора вкладки: Измерение; Эхо-сигнал; Выходы; О датчике (рисунок 2.2).

3) На вкладке «Измерение» выводятся текущие значения всех измеряемых параметров (рисунок 2.2):

«Температура» – значение окружающей температуры в зоне установки датчика; «Расстояние» – текущая дистанция до препятствия (отражателя);

«СКО» - среднее квадратичное отклонение 100 последних измерений;

«Максимум» – максимальное значение из 100 последних измерений;

«Среднее» – среднее значение 100 последних измерений;

«Минимум» – минимальное значение из 100 последних измерений.

4) На вкладке «Эхо-сигнал» визуально отображается график с уровнем приходящего отраженного сигнала датчика, в зависимости от расстояния (рисунок 2.3). Пиковое изменение указывает на наличие препятствия, а числовое значение соответствует расстоянию. Вкладка позволяет увидеть нахождение в зоне луча посторонних нежелательных объектов и воспользоваться настройкой чувствительности вдоль акустической оси сенсора для подавления приходящих мешающих отражений на определенной дистанции (см. раздел 5).

Рисунок 2.3 – Пример вида отражения на вкладке «Эхо-сигнал».

5) На вкладке «**Выходы**» отображаются настраиваемые параметры работы дискретного и аналогового (или второго дискретного, в зависимости от исполнения) выходов (**рисунок 2.4**).

15 Sonopulse T	une						-		×
айл									
1змерение	Эхо-сигнал	Выходы	О датчике						
	Дискр	етный вых	од №1		Аналоговы	ій выход (4-20 мА)—		
Coci	ояние Вкл	пючен	•		13	.105мА			
Bour				_n	ороги / сглажива	ние			
0	им работы Порог			Уţ	овень 4мА, мм	0			
Окно			У	овень 20мА, мм	2000				
Инв	Инверсия		Д	емпфирование	0				
	Да								
۲	Нет				Подстройка вь	іхода			
Пор	оги срабатыв	ания, мм			Ноль" шкалы			-	
Верх	ний порог		1333						
Ниж	ний порог		667	ſ	Іолная шкала			-	

Настройка дискретного выхода:

В поле «Состояние» отображается срабатывание дискретного выхода.

«Режим работы» выбирается из доступного списка:

– «Порог»: переключение выхода происходит при обнаружении объекта за порогом.

 – «Окно»: переключение состояния выхода происходит при обнаружении объекта внутри контролируемого окна.

«Инверсия»:

– «Нет» – инверсия отключена (по умолчанию) для режима работы, показанного на **рисунке 2.5**.

 – «Да» – инверсия включена, график состояний дискретных выходов зеркально переворачивается – инвертируется.

«Нижний порог, мм» и «Верхний порог, мм» – поля для ввода значений, при которых будет производиться переключение дискретного выхода (для режима «уровень» верхний и нижний пороги устанавливаются одинаковыми или разными, если нужен режим порога с гистерезисом).

Дистанция до отражателя, мм

Отличия режимов поясняют временные диаграммы на рисунке 2.6.

Рисунок 2.6 – Диаграмма работы дискретного выхода (без инверсии) при изменении дистанции до отражателя, где L1, L2 – пороговые значения расстояния.

Настройка аналогового выхода:

В строках «Уровень 4 мА (или 0 В для выхода 0...10 В), мм» и «Уровень 20 мА (или 10 В для выхода 0...10 В), мм» задаются необходимые значения рабочего поддиапазона для работы ЦАП при формировании выходного аналогового сигнала. Для инвертирования режима работы аналогового выхода задайте значение «Уровень 4 мА (или 0 В для выхода 0...10 В), мм» большим, чем значение «Уровень 20 мА (или 10 В для выхода 0...10 В), мм». «Демпфирование» — цифровой фильтр для работы в условиях больших помех, доступны количества отсчетов от 0 (отключен) до 100 и более (чем больше значение, тем дольше нужно поработать датчику, чтобы набрать указанное количество отсчетов). Подробнее работа фильтров описана в разделе 5.

«Подстройка выхода» — при необходимости позволяет откалибровать аналоговый выходной сигнал по двум граничным точкам 4 мА и 20 мА (0 В и 10 В для выхода 0...10 В). Для включения подстройки выходного сигнала нажмите курсором на флажок, расположенный левее надписи «Подстройка выхода». Далее перемещая соответствующий ползунок вправо или влево подстройте сигналы 4 мА (0 В) и 20 мА (10 В).

6) На вкладке «**О датчике**» отображаются справочные параметры изделия от изготовителя, недоступные для изменений пользователем и корректировки, задающиеся при необходимости пользователем (**рисунок 2.7**).

<u>НШ</u> Sonopulse Tu Файл	une					- 0	×
Измерение	Эхо-сигнал	Выходы	О датчике				
	И	нформац	ия		Корр	екция	_
Заводской	й номер		170319	68	Высота подвеса, мм	O	
Дата изготовления			11/11/24		Температура, мК	1900	
Диапазон	измерения, м	м	2000				
Версия аппаратной части		ти	1.1				
Версия встроенного ПО)	0.5				
Версия Sonopulse Tune			1.0				

Рисунок 2.7 – Пример вида вкладки «О датчике».

На данной вкладке пользователь может задать следующие коррекции:

«Высота подвеса, мм» — позволяет скорректировать измерения датчика в случае необходимости задать начало отсчёта расстояние не от торца датчика.

«Температура, мК» – позволяет скорректировать показания датчика температуры.

7) В меню «Файл» доступны следующие функции (рисунок 2.8):

«Сохранить конфигурацию на диск» – позволяет сохранить настройки датчика в виде файла на компьютер.

«Загрузить конфигурацию с диска» – позволяет загрузить в датчик настройки из сохранённого ранее файла.

«Сохранить настройки в датчик» – сохраняет изменения настроек датчика.

«Сброс к заводских настроек» - сбрасывает все настройки до заводских значений.

Рисунок 2.8 – Пример вида меню «Файл».

 Если закрыть программу, не сохранив изменения в настройках датчика, то появится окно с предложением сохранить или не сохранять изменения в настройках (**рисунок** 2.9).

Рисунок 2.9 – Вид окна сохранения или отмены изменений в настройках датчика.

3 Порядок настройки датчика по технологии Teach-IN

3.1 Подключение цепей и общая информация

Для настройки конфигурации датчика на объекте по отраженному сигналу используется его временное подключение через кабель с дополнительной кнопкой «Установка» (SB1), как это показано на **рисунке Б.2** (**Приложение Б**).

Примечание: вместо нажатия кнопки «Установка» (SB1) можно замкнуть контакты 5 и 3 разъема X1. Расположение контактов показано на **рисунке Б.З** (**Приложение Б**).

Переход в режим настройки (программирования):

1) **для первого дискретного выхода**, после включения питания, следует удерживать нажатой кнопку SB1 в течение 2 сек – начнёт мигать красный светодиод (расположен у разъема X1);

2) для аналогового выхода (или второго дискретного) нужно до включения датчика нажать и удерживать кнопку SB1 – после включения питания датчика будут мигать зелёный и красный светодиоды.

Примечание – Переход к настройкам второго дискретного выхода производится так же, как и переход к настройкам аналогового выхода.

Выход из режима настройки происходит автоматически, если кнопка «Установка» (SB1) не нажималась в течение 30 сек.

Автоматическая блокировка кнопки SB1 производится через 5 мин после включения питания, либо через 5 мин после завершения последнего события обучения датчика. Новое событие настройки (обучения) возможно только после отключения и повторного включения питания, с переходом в режим настройки.

3.2 Установка границ диапазона для аналогового выхода

• Перевести датчик в режим настройки как описано в п. 3.1.

• Первая точка диапазона: мишень (объект) устанавливается на расстоянии ближней границы рабочего диапазона (соответствует выходному сигналу 4 мА) и нажимается кнопка «Установка» (SB1) – красный светодиод начнет постоянно светиться. Ближняя граница зоны чувствительности аналогового выхода запрограммирована.

• Вторая точка диапазона: мишень передвигается на расстояние, соответствующее сигналу 20 мА, и нажимается кнопка «Установка» (SB1) – красный светодиод погаснет. Дальняя граница зоны чувствительности аналогового выхода запрограммирована.

Направление изменения сигнала на выходе: рост тока/напряжения при удалении объекта от датчика.

3.3 Выбор инверсного изменения сигнала на аналоговом выходе

• Перевести датчик в режим настройки как описано в п. 3.1.

• Первая точка диапазона: мишень (объект) устанавливается на расстоянии дальней границы рабочего диапазона (соответствует выходному сигналу 4 мА) и нажимается кнопка «Установка» (SB1) – красный светодиод начнет постоянно светиться. Дальняя граница зоны чувствительности аналогового выхода запрограммирована.

• Вторая точка диапазона: мишень передвигается на расстояние, соответствующее сигналу 20 мА, и нажимается кнопка «Установка» (SB1) – красный светодиод погаснет. Ближняя граница зоны чувствительности аналогового выхода запрограммирована. Направление изменения сигнала на выходе: рост тока/напряжения при приближении объекта к датчику.

3.4 Установка границ окна срабатывания дискретного выхода

• Перевести датчик в режим настройки (см. п. 3.1).

• Первая точка дистанции: мишень (объект) устанавливается на необходимом расстоянии, при котором выход должен включиться, и нажимается кнопка «Установка» (SB1) – красный светодиод начнет постоянно светиться.

• Вторая точка дистанции: мишень передвигается на расстояние, соответствующее порогу отключения выхода, и нажимается кнопка «Установка» (SB1) – красный светодиод погаснет. Дальняя граница порога переключения выхода запрограммирована. Для выходного коммутатора будет установлен режим работы «Окно».

Примечание – Если вторая точка дистанции ближе к датчику, то устанавливается режим работы «Порог» с гистерезисом, соответствующим установленным границам.

3.5 Установка одного порога срабатывания дискретного выхода

Производится аналогично действиям п. 3.4, но второй порог устанавливается равным первому. Переключение выхода происходит при обнаружении объекта за пороговой дистанцией.

4 Индикация режимов работы датчика

	Индикаторные светодиоды:				
состояние датчика	зеленый	красный	желтые		
Нормальный рабочий режим:	включен	отключен	*		
– отключен дискретный выход 1 (2)	включен	отключен	отключен		
– включен дискретный выход 1 (2)	включен	отключен	включен		
Включен режим Teach-IN:	включен	включен	*		
 настройка первого дискретного выхода (точка 1) 	включен	мигает	*		
 настройка первого дискретного выхода (точка 2) 	включен	включен	*		
 настройка аналогового или второго дискретного выхода (точка 1) 	мигает	мигает	*		
 настройка аналогового или второго дискретного выхода (точка 2) 	мигает	включен	*		
* Индикатор состояния дискретного выхода светится при включенном коммутаторе.					

5 Фильтрация сигнала при работе

Применяемый алгоритм и значения силы фильтрации подбираются экспериментально на объекте. Могут применяться два алгоритма фильтрации:

1) сглаживающий – обеспечивает сглаживание скачков выходного сигнала при работе в условиях помех. Может использоваться, например, при измерении уровня жидкости, на поверхности которой присутствуют волны. Работу фильтра поясняет **рисунок 5.1**. Уровень фильтрации определяет количество выборок значений для определения

расстояния. Для изменения уровня фильтрации, при использовании программы «Sonopulse Tune», на вкладке «Выходы» в строке «Демпфирование» – доступны значения от 0 (отключен фильтр) до 100 и более (чем больше значение, тем дольше нужно поработать датчику, чтобы набрать указанное количество отсчетов).

2) для интервала поддиапазона – подавление помех от находящихся в зоне луча посторонних элементов на определенном расстоянии. Для указания интервала и изменения уровня чувствительности датчика в этом интервале в программе «Sonopulse Tune» на вкладке «Эхо-сигнал» устанавливают курсор вблизи синей линии, в нужном секторе графика, и нажимают на левую кнопку мыши – появится выделенный пунктиром прямоугольный участок фильтрации (ограничения уровня сигнала, рисунок 5.2), на котором курсором можно изменить высоту синей линии, нажатием левой кнопки мыши.

Рисунок 5.2 – Пример изменения чувствительности датчика по оси луча в выделенной пунктиром зоне на вкладке «Эхо-сигнал». Рисунок (а) – эхо-сигнал без фильтрации, рисунок (б) – с фильтрацией.

6 Размещение датчика на объекте

ВНИМАНИЕ! Не рекомендуется устанавливать два и более ультразвуковых датчиков поблизости, так как их сигналы могут влиять друг на друга.

Рекомендуется защищать датчик от прямых солнечных лучей и дождя. Для установки датчика могут использоваться соответствующие переходные фланцы или монтажные кронштейны.

6.1 Установка датчика в резервуарах

При размещении датчика, в пределах диаграммы направленности излучателя не должно находиться выступающих посторонних элементов конструкции. Варианты правильного монтажа датчиков для контроля заполнения баков и контейнеров показаны на **рисунке 6.1**.

Рисунок 6.1 – Примеры установки датчика в баке (а) и открытом контейнере (6).

Не рекомендуется устанавливать датчик близко к стенке резервуара. Необходимо оставлять расстояние между датчиком и стенкой резервуара не менее 0,15 от максимальной дистанции измерения в баке (Lmax).

При измерении уровня сыпучих материалов следует учитывать отличие отражающих свойств поверхностного слоя разных сред по отношению к металлической пластине. На точность измерения расстояний также оказывает влияние способ загрузки сыпучих материалов, неравномерность и наклон отражающей поверхности. При выборе места для установки (закрепления) датчика следует обеспечить отклонение отражающей поверхности от перпендикулярности к оси сенсора не более чем на ±3 градуса.

При типичном использовании твердых сыпучих материалов обычно присутствует некоторое количество пыли, которая также влияет на диапазон и точность работы датчика. Из-за поглощения ультразвукового сигнала максимальная дальность уменьшается согласно **таблице 6.1**. Это потребует выбирать датчик на бо́льшую дальность и подстраивать (масштабировать) рабочий диапазон выходного сигнала уже на объекте.

Таблица 6.1.

	C	Максимальная дальность измерения расстояний для разных сред				
Модель датчика	слепая зона, мм	металлическая поверхность, мм	вода и большинство жидкостей, мм	крупа, рис и большинство сыпучих материалов. мм		
SP-1000	≤100	1000	1000	500		
SP-2000	≤150	2000	2000	1000		
SP-3000	≤200	3000	3000	1500		
SP-4000	≤300	4000	4000	2000		

6.2 Измерение расстояния до объекта

Датчик настраивается на обнаружение поверхности, исполняющей роль отражателя, учитывая при этом слепую зону, **рисунок 6.2.**

Определение расстояния производится по аналоговому сигналу. Аналоговый выходной сигнал (ток 4...20 мА или напряжение 0...10 В) линейно нормируется к установленному поддиапазону измерений, как это показано на **рисунке 6.3**.

Рисунок 6.3 – Графики работы аналогового выхода.

Примечание – Минимальный аналоговый сигнал можно устанавливать от любого значения расстояния.

6.3 Работа дискретных выходов в разных режимах

Для оперативного управления внешним оборудованием часто используются дискретные выходы датчика (один или два коммутатора).

Варианты возможной работы коммутатора показаны на диаграммах рисунка 6.4.

Рисунок 6.4 – Пример работы дискретного выхода (без инверсии) при изменении дистанции до отражателя, где L1, L2 – установленные пороговые значения расстояния для переключения коммутатора.

ПРИЛОЖЕНИЕ А Внешний вид адаптера SCON 100

Адаптер SCON 100 выполнен в корпусе, совмещенном с разъемом USB и кабелем, подключаемым к настраиваемому датчику через разъем M12×1. Длина кабеля стандартно 0,6 м (по заказу может быть увеличена до 2,5 м).

ПРИЛОЖЕНИЕ Б Подключения для конфигурирования датчика

Рисунок Б.1 – Подключение адаптера SCON 100 к датчику и ПК: 1 – кабель с разъемом M12×1, встроенный в адаптер.

Рисунок Б.2 – Подключение кнопки SB1 для настройки датчика по технологии Teach-IN (обучение по входному сигналу на объекте).

Рисунок Б.3 – Расположение контактов разъема M12×1 датчика (со стороны подключения)

Контакты разъема M12×1:

Назначение контактов	Номер контактов
Питание + (от 10 до 40 В)	1
Выход аналоговый (или коммутатора 2)	2
Питание – (общая линия)	3
Выход коммутатора 1	4
Конфигурационный выход	5